\(l + m = 10lm ⇒ \frac{l}{lm} + \frac{m}{lm }= 10 ⇒ \frac{1}{m} + \frac{1}{l }= 10\) … (1)
Similarly, \(m + n = 12mn ⇒ \frac{1}{n} + \frac{1}{m} = 12\) … (2)
And, \(n + l = - 4nl ⇒ \frac{1}{l} + \frac{1}{n} = -4 \)… (3)
Adding equations \((1), (2)\), and \((3)\), we get the following:
\(2\bigg(\frac{1}{l} + \frac{1}{m} + \frac{1}{n}\bigg) = 18\)
\(⇒ \bigg(\frac{1}{l} + \frac{1}{m} + \frac{1}{n}\bigg) = 9\)
So, = \(\frac{180 lmn}{lm+mn+nl }= \frac{180 }{ \frac{1}{n}+\frac{1}{l}+\frac{1}{m}} = \frac{180}{9} = 20\)
Hence, option B is the correct answer.
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |