Given: $x^8 + \left(\frac{1}{x}\right)^8 = 47$
We can write this as:
$\Rightarrow (x^4)^2 + \left(\frac{1}{x^4}\right)^2 = 47$
$\Rightarrow \left(x^4 + \frac{1}{x^4}\right)^2 - 2 = 47$
$\Rightarrow \left(x^4 + \frac{1}{x^4}\right)^2 = 49$
$\Rightarrow x^4 + \frac{1}{x^4} = 7$ …… (i)
Now, from equation (i):
$\Rightarrow (x^2)^2 + \left(\frac{1}{x^2}\right)^2 = 7$
$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 - 2 = 7$
$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 9$
$\Rightarrow x^2 + \frac{1}{x^2} = 3$ …… (ii)
Now assume: $x + \frac{1}{x} = \sqrt{5}$
Then:
$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right)$
$= (\sqrt{5})^3 - 3\sqrt{5} = 5\sqrt{5} - 3\sqrt{5} = 2\sqrt{5}$ …… (iii)
Now calculate: $x^9 + \frac{1}{x^9}$
$x^9 + \frac{1}{x^9} = \left(x^3 + \frac{1}{x^3}\right)^3 - 3\left(x^3 + \frac{1}{x^3}\right)$
$= (2\sqrt{5})^3 - 3(2\sqrt{5})$
$= 8 \cdot 5\sqrt{5} - 6\sqrt{5}$
$= 40\sqrt{5} - 6\sqrt{5}$
$= 34\sqrt{5}$
Therefore, the correct answer is: (A) $34\sqrt{5}$