We are given the integral: \[ \int x e^{-x} \, dx = M e^{-x} + C \] We are tasked with finding the value of \( M \).
Step 1: Use integration by parts to solve the integral. Recall the formula for integration by parts:
\[ \int u \, dv = uv - \int v \, du \] Let \( u = x \) and \( dv = e^{-x} \, dx \). Then, \( du = dx \) and \( v = -e^{-x} \).
Step 2: Apply the integration by parts formula:
\[ \int x e^{-x} \, dx = -x e^{-x} - \int -e^{-x} \, dx \] Simplify: \[ \int x e^{-x} \, dx = -x e^{-x} + \int e^{-x} \, dx \] The integral of \( e^{-x} \) is \( -e^{-x} \), so: \[ \int x e^{-x} \, dx = -x e^{-x} - e^{-x} + C \] Step 3: Factor out \( e^{-x} \):
\[ \int x e^{-x} \, dx = -(x + 1) e^{-x} + C \] Thus, comparing with the given equation \( \int x e^{-x} \, dx = M e^{-x} + C \), we see that:
\[ M = -(x + 1) \]
Thus, the correct answer is option (A).