We are given the following information:
- The angle between \( \vec{a} \) and \( \vec{b} \) is \( 30^\circ \),
- The angle between \( \vec{a} \) and \( \vec{b} + \vec{c} \) is \( 45^\circ \), - \( |\vec{b}| = \sqrt{6} \), - \( |\vec{c}| = 2\sqrt{2} \). We need to find \( |\vec{b} + \vec{c}| \).
Step 1: Use the Law of Cosines
First, use the Law of Cosines to express \( |\vec{b} + \vec{c}| \). The formula for the magnitude of the sum of two vectors is: \[ |\vec{b} + \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 + 2|\vec{b}||\vec{c}|\cos(\theta) \] where \( \theta \) is the angle between \( \vec{b} \) and \( \vec{c} \).
We are not directly given the angle between \( \vec{b} \) and \( \vec{c} \), but we can use the information about the angle between \( \vec{a} \) and \( \vec{b} + \vec{c} \).
Step 2: Use the angle between \( \vec{a} \) and \( \vec{b} + \vec{c} \)
The angle between \( \vec{a} \) and \( \vec{b} + \vec{c} \) is given as \( 45^\circ \). The dot product formula can be used:
\[ \vec{a} \cdot (\vec{b} + \vec{c}) = |\vec{a}| |\vec{b} + \vec{c}| \cos(45^\circ) \] This equation allows us to find the relationship between the magnitudes of \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \). After solving this system of equations, we find that: \[ |\vec{b} + \vec{c}| = 5 \] Thus, the correct answer is option (E), \( |\vec{b} + \vec{c}| = 5 \).
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]
\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]