Let the integral be $I = \int \sqrt{x}(1-x^3)^{-1/2} dx = \int \frac{\sqrt{x}}{\sqrt{1-x^3}} dx$.
Rewrite it as:
\[
I = \int \frac{x^{1/2}}{\sqrt{1-(x^{3/2})^2}} dx
\]
Let $u = x^{3/2} \Rightarrow du = \frac{3}{2}\sqrt{x}dx \Rightarrow \sqrt{x}dx = \frac{2}{3}du$.
Substituting:
\[
I = \int \frac{1}{\sqrt{1-u^2}} \cdot \frac{2}{3} du = \frac{2}{3}\sin^{-1}(u) + c = \frac{2}{3}\sin^{-1}(x^{3/2}) + c
\]
Comparing with $\frac{2}{3}g(f(x)) + c$, we identify $f(x) = x^{3/2},\ g(x) = \sin^{-1}x$.
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Step 1: Understand the given integral
We have:
\[
\int \sqrt{x} (1 - x^3)^{-1/2} \, dx = \frac{2}{3} g(f(x)) + c
\]
We need to identify the functions \(f(x)\) and \(g(x)\).
Step 2: Use substitution
Let:
\[
t = x^{3/2}
\]
Then differentiate \(t\) with respect to \(x\):
\[
\frac{dt}{dx} = \frac{3}{2} x^{1/2} \implies dt = \frac{3}{2} x^{1/2} dx
\]
Rearranging:
\[
x^{1/2} dx = \frac{2}{3} dt
\]
Step 3: Rewrite the integral in terms of \(t\)
Substitute \(x^{1/2} dx\) and \(1 - x^3 = 1 - t^2\):
\[
\int \sqrt{x} (1 - x^3)^{-1/2} dx = \int (1 - t^2)^{-1/2} \frac{2}{3} dt = \frac{2}{3} \int (1 - t^2)^{-1/2} dt
\]
Step 4: Recognize the integral form
\[
\int (1 - t^2)^{-1/2} dt = \sin^{-1} t + c
\]
Step 5: Write the solution back in terms of \(x\)
\[
\int \sqrt{x} (1 - x^3)^{-1/2} dx = \frac{2}{3} \sin^{-1} (x^{3/2}) + c
\]
Thus:
\[
f(x) = x^{3/2}, \quad g(x) = \sin^{-1} x
\]