Step 1: Understand the given integral
We have:
\[
\int \sqrt{x} (1 - x^3)^{-1/2} \, dx = \frac{2}{3} g(f(x)) + c
\]
We need to identify the functions \(f(x)\) and \(g(x)\).
Step 2: Use substitution
Let:
\[
t = x^{3/2}
\]
Then differentiate \(t\) with respect to \(x\):
\[
\frac{dt}{dx} = \frac{3}{2} x^{1/2} \implies dt = \frac{3}{2} x^{1/2} dx
\]
Rearranging:
\[
x^{1/2} dx = \frac{2}{3} dt
\]
Step 3: Rewrite the integral in terms of \(t\)
Substitute \(x^{1/2} dx\) and \(1 - x^3 = 1 - t^2\):
\[
\int \sqrt{x} (1 - x^3)^{-1/2} dx = \int (1 - t^2)^{-1/2} \frac{2}{3} dt = \frac{2}{3} \int (1 - t^2)^{-1/2} dt
\]
Step 4: Recognize the integral form
\[
\int (1 - t^2)^{-1/2} dt = \sin^{-1} t + c
\]
Step 5: Write the solution back in terms of \(x\)
\[
\int \sqrt{x} (1 - x^3)^{-1/2} dx = \frac{2}{3} \sin^{-1} (x^{3/2}) + c
\]
Thus:
\[
f(x) = x^{3/2}, \quad g(x) = \sin^{-1} x
\]
Final answer:
\[
\boxed{f(x) = x^{3/2}, \quad g(x) = \sin^{-1} x}
\]