We are given:
\[
\int f(x)\,dx = \Psi(x)
\Rightarrow \int x^5 f(x^3)\,dx = ?
\]
Let \( u = x^3 \Rightarrow du = 3x^2\,dx \Rightarrow dx = \frac{du}{3x^2} \)
Then \( x^5 f(x^3)\,dx = x^5 f(u)\cdot \frac{du}{3x^2} = \frac{1}{3} x^3 f(u)\,du \)
So the integral becomes:
\[
\int x^5 f(x^3)\,dx = \frac{1}{3} \int x^3 f(x^3)\,du
\]
Now express \( x^3 \) in terms of \( u \Rightarrow x^3 = u \), so:
\[
\frac{1}{3} \int u f(u)\, \frac{du}{u'} \Rightarrow \text{use integration by parts or known reduction formula}
\]
The result is:
\[
\frac{1}{3} x^3 \Psi(x^3) - \int x^2 \Psi(x^3)\,dx
\]