We are given the integral:
\[
\int_0^{\pi/2} \sin^m x \cos^4 x \, dx = \frac{7\pi}{2048}
\]
Use the standard identity:
\[
\int_0^{\pi/2} \sin^m x \cos^n x \, dx = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)
\]
Here, \( n = 4 \Rightarrow \frac{n+1}{2} = \frac{5}{2} \)
So,
\[
\frac{1}{2} B\left(\frac{m+1}{2}, \frac{5}{2}\right) = \frac{7\pi}{2048}
\]
Using properties of Beta and Gamma functions:
\[
B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}
\]
Plug values and solve trial-wise for \( m = 8 \), we get:
\[
B\left(\frac{9}{2}, \frac{5}{2}\right) = \frac{\Gamma(\frac{9}{2}) \Gamma(\frac{5}{2})}{\Gamma(7)} = \frac{105 \cdot \frac{3\sqrt{\pi}}{4}}{720} = \frac{7\pi}{1024}
\Rightarrow \frac{1}{2} \cdot \frac{7\pi}{1024} = \frac{7\pi}{2048}
\]
Hence, \( \boxed{m = 8} \)