To solve the integral \(\int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx\), we need to use trigonometric identities and integration techniques. The problem states that the integral equals \(a\pi + b\sqrt{3}\), where \(a\) and \(b\) are rational numbers, and we need to find \(9a + 8b\).
**Step 1: Use the power-reduction identity**
The power-reduction identity for \(\cos^2 x\) is:
\[\cos^2 x = \frac{1 + \cos 2x}{2}\]
Thus, \(\cos^4 x = (\cos^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2\).
**Step 2: Expand the expression**
\[ \cos^4 x = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{1 + 2\cos 2x + \cos^2 2x}{4} \]
Using \(\cos^2 2x = \frac{1 + \cos 4x}{2}\), we have:
\[ \cos^4 x = \frac{1 + 2\cos 2x + \frac{1 + \cos 4x}{2}}{4} = \frac{3 + 4\cos 2x + \cos 4x}{8} \]
**Step 3: Integrate the expression**
Now, integrate each term separately from \(0\) to \(\frac{\pi}{3}\):
\[ \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = \int_{0}^{\frac{\pi}{3}} \frac{3}{8} \, dx + \int_{0}^{\frac{\pi}{3}} \frac{4\cos 2x}{8} \, dx + \int_{0}^{\frac{\pi}{3}} \frac{\cos 4x}{8} \, dx \]
\[ = \frac{3}{8} \cdot \frac{\pi}{3} + \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \cos 2x \, dx + \frac{1}{8} \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx \]
**Step 4: Solve the integrals**
The integral \(\int \cos kx \, dx = \frac{\sin kx}{k} + C\).
Thus,
\[ \int_{0}^{\frac{\pi}{3}} \cos 2x \, dx = \left[\frac{\sin 2x}{2}\right]_{0}^{\frac{\pi}{3}} = \frac{\sin \frac{2\pi}{3}}{2} - \frac{\sin 0}{2} = \frac{\sqrt{3}}{4} \]
\[ \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx = \left[\frac{\sin 4x}{4}\right]_{0}^{\frac{\pi}{3}} = \frac{\sin \frac{4\pi}{3}}{4} - \frac{\sin 0}{4} = -\frac{\sqrt{3}}{8} \]
Substitute back:
\[ \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = \frac{\pi}{8} + \frac{1}{2} \cdot \frac{\sqrt{3}}{4} + \frac{1}{8} \left(-\frac{\sqrt{3}}{8}\right) \]
\[ = \frac{\pi}{8} + \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{64} \]
Simplify:
\[ = \frac{\pi}{8} + \frac{8\sqrt{3} - \sqrt{3}}{64} \]
\[ = \frac{\pi}{8} + \frac{7\sqrt{3}}{64} \]
**Step 5: Find \(9a + 8b\)**
We have \(a = \frac{1}{8}\) and \(b = \frac{7}{64}\). Therefore:
\[ 9a + 8b = 9 \times \frac{1}{8} + 8 \times \frac{7}{64} \]
\[ = \frac{9}{8} + \frac{56}{64} \]
\[ = \frac{9}{8} + \frac{7}{8} = 2 \]
Thus, the value of \(9a + 8b\) is \(2\), so the correct answer is 2.
To evaluate the integral:
\[ I = \int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx \]
we use the power-reduction formula:
\[ \cos^4 x = (\cos^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{1}{4}(1 + 2\cos 2x + \cos^2 2x) \]
Using the formula \(\cos^2 2x = \frac{1 + \cos 4x}{2}\):
\[ \cos^4 x = \frac{1}{4}\left(1 + 2\cos 2x + \frac{1 + \cos 4x}{2}\right) = \frac{1}{4}\left(\frac{3}{2} + 2\cos 2x + \cos 4x\right) = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x \]
Now, integrating term by term:
\[ I = \int_{0}^{\frac{\pi}{3}} \left(\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) dx \] \[ I = \frac{3}{8} \int_{0}^{\frac{\pi}{3}} dx + \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \cos 2x \, dx + \frac{1}{8} \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx \]
Evaluating each integral:
\[ \int_{0}^{\frac{\pi}{3}} dx = \frac{\pi}{3} \] \[ \int_{0}^{\frac{\pi}{3}} \cos 2x \, dx = \frac{\sin 2x}{2} \bigg|_{0}^{\frac{\pi}{3}} = \frac{1}{2} \left(\sin \frac{2\pi}{3} - \sin 0\right) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \] \[ \int_{0}^{\frac{\pi}{3}} \cos 4x \, dx = \frac{\sin 4x}{4} \bigg|_{0}^{\frac{\pi}{3}} = \frac{1}{4} \left(\sin \frac{4\pi}{3} - \sin 0\right) = \frac{1}{4} \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{3}}{8} \]
Substituting these values:
\[ I = \frac{3}{8} \cdot \frac{\pi}{3} + \frac{1}{2} \cdot \frac{\sqrt{3}}{4} + \frac{1}{8} \cdot \left(-\frac{\sqrt{3}}{8}\right) \] \[ I = \frac{\pi}{8} + \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{64} \]
Combining terms:
\[ I = \frac{\pi}{8} + \frac{7\sqrt{3}}{64} \]
Thus, comparing with \( I = a\pi + b\sqrt{3} \):
\[ a = \frac{1}{8}, \quad b = \frac{7}{64} \]
Calculating \( 9a + 8b \):
\[ 9a + 8b = 9 \cdot \frac{1}{8} + 8 \cdot \frac{7}{64} = \frac{9}{8} + \frac{56}{64} = \frac{9}{8} + \frac{7}{8} = 2 \]
Conclusion: \( 9a + 8b = 2 \).
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
