Step 1: Solve the left-hand side integral.
Evaluate:
\[
\int_0^2 2e^{2x} \, dx.
\]
Using the substitution \( u = 2x \), \( du = 2dx \), and adjusting the limits:
\[
\int_0^2 2e^{2x} \, dx = \int_0^4 e^u \, du = e^u \Big|_0^4 = e^4 - 1.
\]
Step 2: Solve the right-hand side integral.
Evaluate:
\[
\int_0^a e^x \, dx = e^x \Big|_0^a = e^a - 1.
\]
Step 3: Equate the two integrals.
Equating the left-hand side and right-hand side:
\[
e^4 - 1 = e^a - 1.
\]
Cancel \( -1 \) from both sides:
\[
e^4 = e^a.
\]
Taking the natural logarithm:
\[
a = 4.
\]
Final Answer:
\[
\boxed{a = 4.}
\]