Step 1: Simplify the Integral
We are given:
\(I = \int \frac{x^2 \, dx}{(x \sin x + \cos x)^2}\)
Let's try to rewrite the integrand in a form that is easier to integrate. Divide both numerator and denominator by \(x^2\cos^2x\):
\(I = \int \frac{x^2 dx}{(x \sin x + \cos x)^2} = \int \frac{x^2 dx}{x^2\cos^2 x (\frac{x \sin x}{\cos x} + 1)^2/x^2} =\int \frac{sec^2(x)}{ (tan(x)+1/x)^2} dx \)
This doesn't simplify it.
Let \(u = x \sin x + \cos x\)
\(\frac{du}{dx} = x \cos x + \sin x - \sin x = x \cos x\)
So, let's try integration by parts. Rewrite as:
\(I = \int \frac{x}{\cos x} \cdot \frac{x \cos x \, dx}{(x \sin x + \cos x)^2}\)
Now, we will perform integration by parts:
\(\int u dv = uv - \int v du\)
Let \(u = \frac{x}{\cos x}\) and \(dv = \frac{x \cos x}{(x \sin x + \cos x)^2} \, dx\)
First, find du:
\(du = \frac{\cos x - x(-\sin x)}{\cos^2 x} dx = \frac{\cos x + x \sin x}{\cos^2 x} dx\)
Now, find v. Since \(dv = \frac{x \cos x}{(x \sin x + \cos x)^2} \, dx\), we have:
Let \(w = x \sin x + \cos x\) then \(dw = (x \cos x + \sin x - \sin x)dx = x cos x dx\)
\(v = \int \frac{x \cos x}{(x \sin x + \cos x)^2} \, dx = \int \frac{dw}{w^2} = -\frac{1}{w} = -\frac{1}{x \sin x + \cos x}\)
Step 2: Apply Integration by Parts
Using integration by parts, we have:
\(I = \frac{x}{\cos x} \cdot \left(-\frac{1}{x \sin x + \cos x}\right) - \int \left(-\frac{1}{x \sin x + \cos x}\right) \cdot \frac{\cos x + x \sin x}{\cos^2 x} \, dx\)
\(I = -\frac{x}{\cos x (x \sin x + \cos x)} + \int \frac{1}{\cos^2 x} \, dx\)
\(I = -\frac{x}{\cos x (x \sin x + \cos x)} + \int \sec^2 x \, dx\)
Step 3: Evaluate the Remaining Integral
We know that \(\int \sec^2 x \, dx = \tan x + C\)
So, we have:
\(I = -\frac{x}{\cos x (x \sin x + \cos x)} + \tan x + C\)
Step 4: Identify f(x)
We are given that \(I = f(x) + \tan x + C\). Comparing this with our result:
\(f(x) = -\frac{x}{\cos x (x \sin x + \cos x)}\)
Conclusion:
The function f(x) is:
\(f(x) = -\frac{x}{\cos x (x \sin x + \cos x)}\)
Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:
∫u v dx = u∫v dx −∫u' (∫v dx) dx
The first function ‘u’ is used in the following order (ILATE):
The rule as a diagram: