Let, \( I = \pi^2 \int_{-1}^{1} \left| x \sin \pi x \right| dx \)
\( = \pi^2 \left( \int_{-1}^{0} x \sin \pi x dx - \int_{0}^{1} x \sin \pi x dx \right) \)
\( = \pi^2 \left( 2 \int_{0}^{1} x \sin \pi x dx - \int_{-1}^{0} x \sin \pi x dx \right) \)
Consider \( \int x \sin \pi x dx \)
\( = -\frac{1}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x \)
\( = \frac{x}{\pi} \cos \pi x + \frac{\sin \pi x}{\pi^2} \)
\( I = \pi^2 \left\{ 2 \left( -\frac{x}{\pi} \cos \pi x + \frac{\sin \pi x}{\pi^2} \right) \bigg|_0^1 - \left( -\frac{x}{\pi} \cos \pi x + \frac{\sin \pi x}{\pi^2} \right) \bigg|_0^{3/2} \right\} \)
\( = \pi^2 \left( 2 \left( -\frac{1}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x \right) \bigg|_0^1 - \left( -\frac{x}{\pi} \cos \pi x + \frac{\sin \pi x}{\pi^2} \right) \bigg|_0^{3/2} \right) \)
\( = \pi^2 \left( 2 \left( \frac{-1}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x \right) \bigg|_0^1 - \left( \frac{-1}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x \right) \bigg|_0^{3/2} \right) \)
\( = \pi^2 \left( 3 \right) + \frac{1}{\pi^2} \)
\( = 3 \pi + 1 \)
1. Analyze the integrand
The integrand is \( | \pi^2 x \sin(\pi x) | \). The absolute value will make the integral slightly tricky. We need to determine where \( \pi^2 x \sin(\pi x) \) is positive and negative in the interval \( [-1, 3/2] \).
2. Split the integral into intervals based on the sign of \( \pi^2 x \sin(\pi x) \)
3. Evaluate the integrals
We'll use integration by parts. Let \( u = x \) and \( dv = \sin(\pi x) \, dx \). Then \( du = dx \) and \( v = -\frac{\cos(\pi x)}{\pi} \). The integral of \( x \sin(\pi x) \, dx = -x \frac{\cos(\pi x)}{\pi} + \int \frac{\cos(\pi x)}{\pi} \, dx = -x \frac{\cos(\pi x)}{\pi} + \frac{\sin(\pi x)}{\pi^2} + C \). Now, let's evaluate each interval:
4. Sum the results
Total Integral = \( \pi + \pi + (1 + \pi) = 3\pi + 1 \).
Answer: The integral is equal to \( 1 + 3\pi \). So the answer is option 3.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).