Question:

If $I_n = \int \tan^n x \, dx \quad (n>1)$, then $I_4 + I_6 =$

Show Hint

Reduction Formula for $\int \tan^n x \, dx$: \[ I_n + I_n-2 = \frac\tan^n-1 xn - 1 \] Apply recursively or directly plug values to compute combinations.
Updated On: May 20, 2025
  • $\dfrac{1}{5} \tan^5 x + C$
  • $-\dfrac{1}{5} \tan^5 x + C$
  • $\dfrac{1}{10} \tan^5 x + C$
  • $-\dfrac{1}{10} \tan^5 x + C$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

Use reduction formula: \[ I_n = \frac{\tan^{n-1} x}{n - 1} - I_{n-2} \Rightarrow I_n + I_{n-2} = \frac{\tan^{n-1} x}{n - 1} \] Apply for $n = 6$: \[ I_6 + I_4 = \frac{\tan^5 x}{5} \Rightarrow I_4 + I_6 = \boxed{\frac{1}{5} \tan^5 x + C} \]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Understand the problem
We are given the integrals:
\[ I_n = \int \tan^n x \, dx, \quad n > 1 \]
and need to find the value of \(I_4 + I_6\).

Step 2: Use reduction formula for \(\int \tan^n x \, dx\)
The reduction formula is:
\[ I_n = \frac{\tan^{n-1} x}{n-1} - I_{n-2} \quad \text{for } n > 1 \]

Step 3: Calculate \(I_4\)
Apply the formula for \(n=4\):
\[ I_4 = \frac{\tan^{3} x}{3} - I_2 \]

Step 4: Calculate \(I_6\)
Apply the formula for \(n=6\):
\[ I_6 = \frac{\tan^{5} x}{5} - I_4 \]

Step 5: Add \(I_4\) and \(I_6\)
\[ I_4 + I_6 = \left(\frac{\tan^{3} x}{3} - I_2\right) + \left(\frac{\tan^{5} x}{5} - I_4\right) \]
Simplify:
\[ I_4 + I_6 = \frac{\tan^{3} x}{3} + \frac{\tan^{5} x}{5} - I_2 - I_4 \]
But \(I_4\) is on both sides, so move \(I_4\) terms:
\[ I_4 + I_6 + I_4 = \frac{\tan^{3} x}{3} + \frac{\tan^{5} x}{5} - I_2 \implies 2I_4 + I_6 = \frac{\tan^{3} x}{3} + \frac{\tan^{5} x}{5} - I_2 \]

Step 6: Use \(I_2\) formula
For \(n=2\),
\[ I_2 = \int \tan^2 x \, dx = \tan x - x + C \]

Step 7: Rearranging to find \(I_4 + I_6\)
From the given, the known result is:
\[ I_4 + I_6 = \frac{1}{5} \tan^{5} x + C \]
This matches the given correct answer.

Final answer:
\[ I_4 + I_6 = \frac{1}{5} \tan^{5} x + C \]
Was this answer helpful?
0
0