Question:

If \(I_{n}=\int_{0}^{\pi/4}\tan^{n}x~dx,\) then \(I_{13}+I_{11}=\)

Show Hint

Use integration by parts or a suitable substitution to derive the reduction formula for I_n.
Updated On: Mar 19, 2025
  • \(\frac{1}{13}\)
  • \(\frac{1}{12}\)
  • \(\frac{1}{10}\)
  • \(\frac{1}{11}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Find a reduction formula for In.
In = \(\int_{0}^{\pi/4} \tan^n x \, dx\) = \(\int_{0}^{\pi/4} \tan^{n-2} x \tan^2 x \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - \int_{0}^{\pi/4} \tan^{n-2} x \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - I_{n-2}\)
Let u = tan x, then du = sec2 x dx.
When x = 0, u = 0. When x = π/4, u = 1.
In = \(\int_{0}^{1} u^{n-2} \, du - I_{n-2}\)
In = \(\left[\frac{u^{n-1}}{n-1}\right]_{0}^{1} - I_{n-2}\)
In = \(\frac{1}{n-1} - I_{n-2}\)

Step 2: Use the reduction formula to find I13 + I11.
Using the reduction formula, we have:
I13 = \(\frac{1}{13-1} - I_{11}\) = \(\frac{1}{12} - I_{11}\)
I13 + I11 = \(\frac{1}{12}\)
Therefore, I13 + I11 = \(\frac{1}{12}\).

Was this answer helpful?
0
0