Step 1: Find a reduction formula for In.
In = \(\int_{0}^{\pi/4} \tan^n x \, dx\) = \(\int_{0}^{\pi/4} \tan^{n-2} x \tan^2 x \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - \int_{0}^{\pi/4} \tan^{n-2} x \, dx\)
In = \(\int_{0}^{\pi/4} \tan^{n-2} x \sec^2 x \, dx - I_{n-2}\)
Let u = tan x, then du = sec2 x dx.
When x = 0, u = 0. When x = π/4, u = 1.
In = \(\int_{0}^{1} u^{n-2} \, du - I_{n-2}\)
In = \(\left[\frac{u^{n-1}}{n-1}\right]_{0}^{1} - I_{n-2}\)
In = \(\frac{1}{n-1} - I_{n-2}\)
Step 2: Use the reduction formula to find I13 + I11.
Using the reduction formula, we have:
I13 = \(\frac{1}{13-1} - I_{11}\) = \(\frac{1}{12} - I_{11}\)
I13 + I11 = \(\frac{1}{12}\)
Therefore, I13 + I11 = \(\frac{1}{12}\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: