We are given the definition of an integral \( I_n \) as:
\[ I_n = \int_0^{\pi/4} \tan^n(x) \, dx \]
where \( n \) is a positive integer. We need to find the value of \( I_{10} + I_8 \).
Step 1: Establish a recurrence relation for \( I_n \).
Consider the sum \( I_n + I_{n-2} \) for \( n \ge 2 \):
\[ I_n + I_{n-2} = \int_0^{\pi/4} \tan^n(x) \, dx + \int_0^{\pi/4} \tan^{n-2}(x) \, dx \]
Combine the integrals:
\[ I_n + I_{n-2} = \int_0^{\pi/4} (\tan^n(x) + \tan^{n-2}(x)) \, dx \]
Factor out \( \tan^{n-2}(x) \):
\[ I_n + I_{n-2} = \int_0^{\pi/4} \tan^{n-2}(x) (\tan^2(x) + 1) \, dx \]
Use the identity \( \tan^2(x) + 1 = \sec^2(x) \):
\[ I_n + I_{n-2} = \int_0^{\pi/4} \tan^{n-2}(x) \sec^2(x) \, dx \]
Step 2: Evaluate the integral using substitution.
Let \( u = \tan(x) \). Then \( du = \sec^2(x) \, dx \).
Change the limits of integration:
Substitute into the integral:
\[ I_n + I_{n-2} = \int_0^1 u^{n-2} \, du \]
Evaluate the integral:
\[ I_n + I_{n-2} = \left[ \frac{u^{n-2+1}}{n-2+1} \right]_0^1 = \left[ \frac{u^{n-1}}{n-1} \right]_0^1 \] \[ I_n + I_{n-2} = \frac{1^{n-1}}{n-1} - \frac{0^{n-1}}{n-1} \]
Since \( n \ge 2 \), \( n-1 \ge 1 \), so \( 0^{n-1} = 0 \).
\[ I_n + I_{n-2} = \frac{1}{n-1} \]
This is the recurrence relation, valid for \( n \ge 2 \).
Step 3: Apply the recurrence relation to find \( I_{10} + I_8 \).
We need to find \( I_{10} + I_8 \). This matches the form \( I_n + I_{n-2} \) with \( n = 10 \).
Using the relation \( I_n + I_{n-2} = \frac{1}{n-1} \) with \( n = 10 \):
\[ I_{10} + I_{10-2} = \frac{1}{10-1} \] \[ I_{10} + I_8 = \frac{1}{9} \]
So, the correct answer is (D): ${\frac{1}{9}}$
Given:
$ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx $ We are asked to find:
$ I_{10} + I_8 $
Step 1: Use the reduction formula
The standard reduction formula is:
$ I_n = \frac{1}{n - 1} - I_{n - 2} $
Step 2: Apply the formula recursively
1. $ I_0 = \int_0^{\frac{\pi}{4}} 1 \, dx = \frac{\pi}{4} $ 2. $ I_2 = \frac{1}{1} - I_0 = 1 - \frac{\pi}{4} $ 3. $ I_4 = \frac{1}{3} - I_2 = \frac{1}{3} - \left(1 - \frac{\pi}{4}\right) = \frac{\pi}{4} - \frac{2}{3} $ 4. $ I_6 = \frac{1}{5} - I_4 = \frac{1}{5} - \left(\frac{\pi}{4} - \frac{2}{3}\right) = \frac{13}{15} - \frac{\pi}{4} $ 5. $ I_8 = \frac{1}{7} - I_6 = \frac{1}{7} - \left(\frac{13}{15} - \frac{\pi}{4}\right) = \frac{\pi}{4} - \frac{76}{105} $ 6. $ I_{10} = \frac{1}{9} - I_8 = \frac{1}{9} - \left(\frac{\pi}{4} - \frac{76}{105}\right) = \frac{181}{315} - \frac{\pi}{4} $
Step 3: Add $I_{10}$ and $I_8$
$ I_{10} + I_8 = \left( \frac{1}{9} - I_8 \right) + I_8 = \frac{1}{9} $
Final Answer:
$ \frac{1}{9} $
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: