Question:

If $I_{m}=\int\limits_{1}^{e}(\ln x)^{m} d x$, where $m \in N$, then $I_{10}+10 I_{9}$ is equal to -

Updated On: May 24, 2022
  • $e^{10}$
  • $\frac{e^{10}}{10}$
  • $e$
  • $e^{ -1}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$I_{10}=\int\limits_{1}^{e} 1 .(\ln x)^{10} d x=\left[(\ln x)^{10} x\right]_{1}^{e}$
$-\int\limits_{-1}^{e} 10(\ln x)^{9} \cdot \frac{1}{x} \cdot x d x$
$=e-0-10 \int\limits_{1}^{e}(\ln x)^{9} d x$
$=e-10 I_{9}+10 I_{9}=e$
Was this answer helpful?
0
0