Step 1: Analyze the integrand.
Let $f(x) = \sqrt{3 + x + x^2}$. We need to find the bounds of this function on the interval $[1, 3]$.
Step 2: Find the minimum and maximum values of the expression inside the square root.
Consider $g(x) = 3 + x + x^2$. The derivative is $g'(x) = 1 + 2x$. On the interval $[1, 3]$, $g'(x)>0$, so $g(x)$ is an increasing function.
The minimum value of $g(x)$ on $[1, 3]$ occurs at $x = 1$:
$g(1) = 3 + 1 + 1^2 = 5$
The maximum value of $g(x)$ on $[1, 3]$ occurs at $x = 3$:
$g(3) = 3 + 3 + 3^2 = 15$
Step 3: Find the bounds for the integrand.
Since $g(x)$ is between 5 and 15 on $[1, 3]$, the integrand $f(x) = \sqrt{g(x)}$ is between $\sqrt{5}$ and $\sqrt{15}$:
$\sqrt{5} \le \sqrt{3 + x + x^2} \le \sqrt{15}$ for $1 \le x \le 3$.
Step 4: Use the property of definite integrals for bounded functions.
If $m \le f(x) \le M$ on the interval $[a, b]$, then $m(b - a) \le \int_{a}^{b} f(x) dx \le M(b - a)$.
Here, $m = \sqrt{5}$, $M = \sqrt{15}$, $a = 1$, and $b = 3$, so $b - a = 3 - 1 = 2$.
Therefore,
$\sqrt{5} \cdot (2) \le \int_{1}^{3} \sqrt{3 + x + x^2} dx \le \sqrt{15} \cdot (2)$
$2\sqrt{5} \le I \le 2\sqrt{15}$
Thus, $I$ lies in the interval $\boxed{(2\sqrt{5}, 2\sqrt{15})}$.