Question:

If $ I_{1}=\int_{0}^{\frac{\pi}{2}} f (sin \,2x)sin \,xdx $ and $ I_2 = \int^{\pi/4}_{0}\,f(cos2x) cosx \,dx\,then\, I_1/I_2 $ =

Updated On: Feb 10, 2024
  • $ 1 $
  • \(\sqrt{2}\) 

  • $ \frac{1}{\sqrt{2}} $
  • $ 2 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is(B): √2.

Given \(I_1 = \int\limits_0^{\pi/2} f(sin\,2x) sin\,x dx\)
\(\Rightarrow I_1 = \int\limits_0^{\pi/2} f(sin\,2x) cos\,x dx\)
\((\because \int\limits_0^a f(x) dx = \int\limits_0^a f( a-x) dx ]\)
\(\Rightarrow 2I_1 = \int\limits_0^{\pi/2} f(sin\,2x)(sin\,x) + cos\,x )dx\)
\(= \sqrt{2} \int\limits_0^{\pi/2} f(sin\,2x) cos(x - \frac{\pi}{4})dx\) 
Put \(x - \frac{\pi}{4} = t\)
\(\Rightarrow dx = dt\)
\(\therefore 2I_1 = \sqrt{2} \int\limits_{-\pi/4}^{\pi/4} f(sin (\frac{\pi}{2} + 2t)) cos\,t \,dt\)
\(\therefore 2I_1 = 2\sqrt{2}\int\limits_0^{\pi/4} f(cos\,2t) cos\,t\,dt\)
\(\Rightarrow I_1 = \sqrt{2}\int\limits_0^{\pi/4} f(cos\,2x) \,cos\,x\,dx\)
\(\Rightarrow I_1 = \sqrt{2}\)

Was this answer helpful?
1
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.