Step 1: Formula for the Volume of a Tetrahedron
The volume \( V \) of a tetrahedron formed by four vertices given as position vectors \( \mathbf{A} \), \( \mathbf{B} \), \( \mathbf{C} \), and \( \mathbf{D} \) is given by:
\[
V = \frac{1}{6} \left| \begin{vmatrix}
x_1 & y_1 & z_1
x_2 & y_2 & z_2
x_3 & y_3 & z_3
\end{vmatrix} \right|
\]
where the three vectors forming the parallelepiped are:
\[
\mathbf{AB} = \mathbf{B} - \mathbf{A}, \quad \mathbf{AC} = \mathbf{C} - \mathbf{A}, \quad \mathbf{AD} = \mathbf{D} - \mathbf{A}.
\]
Step 2: Find the Vectors
Given vertices:
\[
\mathbf{A} = (\ 1, -1, -1), \quad
\mathbf{B} = (\ 1, 1, 1), \quad
\mathbf{C} = (\ 1, 1, 2), \quad
\mathbf{D} = (\ 2, 1, 0).
\]
Find the vectors:
\[
\mathbf{AB} = (1,1,1) - (1,-1,-1) = (0,2,2).
\]
\[
\mathbf{AC} = (1,1,2) - (1,-1,-1) = (0,2,3).
\]
\[
\mathbf{AD} = (2,1,0) - (1,-1,-1) = (1,2,1).
\]
Step 3: Compute the Determinant
\[
\begin{vmatrix}
0 & 2 & 2
0 & 2 & 3
1 & 2 & 1
\end{vmatrix}
\]
Expanding along the first column:
\[
= 0 \times \begin{vmatrix} 2 & 3
2 & 1 \end{vmatrix}
- 2 \times \begin{vmatrix} 0 & 3
1 & 1 \end{vmatrix}
+ 2 \times \begin{vmatrix} 0 & 2
1 & 2 \end{vmatrix}.
\]
Calculate each determinant:
\[
\begin{vmatrix} 2 & 3
2 & 1 \end{vmatrix} = (2 \times 1) - (3 \times 2) = 2 - 6 = -4.
\]
\[
\begin{vmatrix} 0 & 3
1 & 1 \end{vmatrix} = (0 \times 1) - (3 \times 1) = -3.
\]
\[
\begin{vmatrix} 0 & 2
1 & 2 \end{vmatrix} = (0 \times 2) - (2 \times 1) = -2.
\]
Step 4: Compute the Determinant Value
\[
= 0 + 2(3) + 2(-2) = 0 + 6 - 4 = 2.
\]
Step 5: Compute the Volume
\[
V = \frac{1}{6} \times |2| = \frac{2}{6} = \frac{1}{3}.
\]
Thus, the correct answer is \( \mathbf{\frac{1}{3}} \).