We are given that \( h(x) = 4x^3 - 5x + 7 \) is the derivative of \( f(x) \), and we need to find the value of:
\( \lim\limits_{t \rightarrow 0} \frac{f(1+t) - f(1)}{t} \).
From the definition of the derivative, we know that:
\( \lim\limits_{t \rightarrow 0} \frac{f(1+t) - f(1)}{t} = f'(1) \).
We are given that \( h(x) = f'(x) \), so:
\( f'(1) = h(1) \).
Now, substitute \( x = 1 \) into the expression for \( h(x) \):
\( h(1) = 4(1)^3 - 5(1) + 7 \).
\( h(1) = 4 - 5 + 7 = 6 \).
The correct answer is 6.
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)