We are given two circles:
\[
C_1: x^2 + y^2 + 2x - 6y + 1 = 0
\]
\[
C_2: x^2 + y^2 - 4x + 2y + 4 = 0
\]
We need to find \( 4h \), where \( (h, k) \) is the internal center of similitude of these circles.
---
Step 1: Convert Circles to Standard Form
The general equation of a circle:
\[
x^2 + y^2 + Dx + Ey + F = 0
\]
has center \( (-D/2, -E/2) \) and radius:
\[
r = \sqrt{\left(\frac{D}{2}\right)^2 + \left(\frac{E}{2}\right)^2 - F}
\]
# Circle 1:
\[
x^2 + y^2 + 2x - 6y + 1 = 0
\]
- Center \( C_1 = (-1, 3) \)
- Radius:
\[
r_1 = \sqrt{\left(\frac{2}{2}\right)^2 + \left(\frac{-6}{2}\right)^2 - 1}
\]
\[
= \sqrt{1 + 9 - 1} = \sqrt{9} = 3
\]
# Circle 2:
\[
x^2 + y^2 - 4x + 2y + 4 = 0
\]
- Center \( C_2 = (2, -1) \)
- Radius:
\[
r_2 = \sqrt{\left(\frac{-4}{2}\right)^2 + \left(\frac{2}{2}\right)^2 - 4}
\]
\[
= \sqrt{4 + 1 - 4} = \sqrt{1} = 1
\]
---
Step 2: Internal Center of Similitude Formula
The internal center of similitude is given by:
\[
h = \frac{r_1 C_2x + r_2 C_1x}{r_1 + r_2}, \quad
k = \frac{r_1 C_2y + r_2 C_1y}{r_1 + r_2}
\]
Substituting:
\[
h = \frac{(3)(2) + (1)(-1)}{3 + 1} = \frac{6 - 1}{4} = \frac{5}{4}
\]
\[
k = \frac{(3)(-1) + (1)(3)}{3 + 1} = \frac{-3 + 3}{4} = \frac{0}{4} = 0
\]
---
Step 3: Compute \( 4h \)
\[
4h = 4 \times \frac{5}{4} = 5
\]
Thus, the correct answer is:
\[
\boxed{5}
\]
\bigskip