Step 1: Understanding the property of \( g(x) \).
The function \( g(x) \) satisfies \( g(-x) = -g(x) \), which means \( g(x) \) is an odd function.
Step 2: Integral over an asymmetric interval.
The integral \( \int_{0}^{2a} g(x) \, dx \) can be related to the integral over the negative interval using the property of odd functions: \[ \int_{0}^{2a} g(x) \, dx = -\int_{-2a}^{0} g(x) \, dx. \]
Step 3: Analyzing the given options.
Option (D) correctly expresses the relationship between the integral over \( [0, 2a] \) and \( [-2a, 0] \) for odd functions.
Step 4: Conclusion.
The integral \( \int_{0}^{2a} g(x) \, dx \) equals \( -\int_{-2a}^{0} g(x) \, dx \). Thus, the correct answer is (D). {10pt}
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
