Step 1: Understanding the property of \( g(x) \).
The function \( g(x) \) satisfies \( g(-x) = -g(x) \), which means \( g(x) \) is an odd function.
Step 2: Integral over an asymmetric interval.
The integral \( \int_{0}^{2a} g(x) \, dx \) can be related to the integral over the negative interval using the property of odd functions: \[ \int_{0}^{2a} g(x) \, dx = -\int_{-2a}^{0} g(x) \, dx. \]
Step 3: Analyzing the given options.
Option (D) correctly expresses the relationship between the integral over \( [0, 2a] \) and \( [-2a, 0] \) for odd functions.
Step 4: Conclusion.
The integral \( \int_{0}^{2a} g(x) \, dx \) equals \( -\int_{-2a}^{0} g(x) \, dx \). Thus, the correct answer is (D). {10pt}
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?