If four distinct points with position vectors \(\overrightarrow a,\overrightarrow b,\overrightarrow c\) and \(\overrightarrow d\) are coplanar, then \([\overrightarrow a \overrightarrow b \overrightarrow c]\) is equal to
\([\overrightarrow a \overrightarrow d \overrightarrow b]+[\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow d\overrightarrow b\overrightarrow c] \)
\([\overrightarrow b \overrightarrow c \overrightarrow d]+[\overrightarrow d \overrightarrow a \overrightarrow c]+[\overrightarrow d\overrightarrow b\overrightarrow a]\)
\([\overrightarrow d \overrightarrow b \overrightarrow a]+[\overrightarrow a \overrightarrow c \overrightarrow c]+[\overrightarrow d\overrightarrow b\overrightarrow c]\)
\([\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow b \overrightarrow d \overrightarrow a]+[\overrightarrow c\overrightarrow d\overrightarrow b]\)
Hide Solution
Verified By Collegedunia
The Correct Option isD
Solution and Explanation
Represent the condition of coplanarity: Since the vectors ⃗b − ⃗a, ⃗c − ⃗b, and ⃗d − ⃗c are coplanar, we have: [⃗b − ⃗a, ⃗c − ⃗b, ⃗d − ⃗c] = 0
Expand the determinant: Expanding the determinant using the scalar triple product: (⃗b − ⃗a) · ((⃗c − ⃗b) × (⃗d − ⃗c)) = 0
Simplify the expression: Using the distributive property: (⃗b − ⃗a) · (⃗c × ⃗b − ⃗c × ⃗a − ⃗a × ⃗d) = 0
Represent as scalar triple products: The scalar triple products can be written as: [⃗b ⃗c ⃗d] − [⃗b ⃗c ⃗a] − [⃗b ⃗a ⃗d] − [⃗a ⃗c ⃗d] = 0