Force (\( F \)), velocity (\( V \)), and time (\( T \)) are fundamental quantities.
Let the dimensional formula for density (\( \rho \)) be:
\[ [\rho] = F^x V^y T^z, \]
where \( x, y, \) and \( z \) are constants to be determined.
Substituting the dimensions into \( [\rho] \):
\[ [ML^{-3}] = [MLT^{-2}]^x [LT^{-1}]^y [T]^z. \]
Expanding the dimensions on the right-hand side:
\[ [ML^{-3}] = M^x L^{x+y} T^{-2x-y+z}. \]
Equating the powers of \( M, L, \) and \( T \):
Substituting \( x = 1 \), \( y = -4 \), and \( z = -2 \):
\[ [\rho] = F^1 V^{-4} T^{-2}. \]
The dimensional formula for density is \( F V^{-4} T^{-2} \).
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
| A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
| B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
| C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
| D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
