Force (\( F \)), velocity (\( V \)), and time (\( T \)) are fundamental quantities.
Let the dimensional formula for density (\( \rho \)) be:
\[ [\rho] = F^x V^y T^z, \]
where \( x, y, \) and \( z \) are constants to be determined.
Substituting the dimensions into \( [\rho] \):
\[ [ML^{-3}] = [MLT^{-2}]^x [LT^{-1}]^y [T]^z. \]
Expanding the dimensions on the right-hand side:
\[ [ML^{-3}] = M^x L^{x+y} T^{-2x-y+z}. \]
Equating the powers of \( M, L, \) and \( T \):
Substituting \( x = 1 \), \( y = -4 \), and \( z = -2 \):
\[ [\rho] = F^1 V^{-4} T^{-2}. \]
The dimensional formula for density is \( F V^{-4} T^{-2} \).

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.