The scalar triple product is given by the determinant of a matrix whose rows (or columns) are the components of vectors \(\vec{a}, \vec{b}, \vec{c}\). That is,
\[
[\vec{a} \, \vec{b} \, \vec{c}] =
\begin{vmatrix}
2 & 3 & 1
1 & -2 & 1
-3 & 1 & 2
\end{vmatrix}
\]
Step 1: Expand the determinant
Use the first row to expand the determinant:
\[
= 2 \begin{vmatrix} -2 & 1
1 & 2 \end{vmatrix}
- 3 \begin{vmatrix} 1 & 1
-3 & 2 \end{vmatrix}
+ 1 \begin{vmatrix} 1 & -2
-3 & 1 \end{vmatrix}
\]
Step 2: Evaluate each minor
\[
= 2((-2)(2) - (1)(1)) = 2(-4 - 1) = 2(-5) = -10
= -3((1)(2) - (1)(-3)) = -3(2 + 3) = -3(5) = -15
= 1((1)(1) - (-2)(-3)) = 1(1 - 6) = 1(-5) = -5
\]
Step 3: Add the results
\[
[\vec{a} \, \vec{b} \, \vec{c}] = -10 -15 -5 = -30
\]