For \( \vec{a} + \lambda \vec{b} \) to be perpendicular to \( \vec{c} \), the dot product of \( (\vec{a} + \lambda \vec{b}) \) and \( \vec{c} \) must be 0.
The dot product condition is:
\[
(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0
\]
First, express the vectors:
\[
\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, \quad \vec{b} = \hat{i} - \hat{j} + 4\hat{k}, \quad \vec{c} = \hat{i} + \hat{j} + \hat{k}
\]
Now, compute the dot product:
\[
(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = (\hat{i} + 2\hat{j} + \hat{k} + \lambda (\hat{i} - \hat{j} + 4\hat{k})) \cdot (\hat{i} + \hat{j} + \hat{k})
\]
\[
= (\hat{i} + 2\hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + 4\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k})
\]
\[
= (1 + 2 + 1) + \lambda (1 - 1 + 4)
\]
\[
= 4 + \lambda (4)
\]
\[
= 4 + 4\lambda
\]
For this to be 0, we have:
\[
4 + 4\lambda = 0
\]
\[
\lambda = -1
\]
Thus, \( \lambda = -1 \).