>
Exams
>
Mathematics
>
Limits
>
if f x x 1 x 0 0 x 0 x 1 x 0 for what value s of a
Question:
If f(x)={|x|+1, x <0 0, x=0 |x|-1, x>0}
For what value (s) of a does lim x
\(\rightarrow\)
af(x) exist?
CBSE Class XI
Updated On:
Oct 25, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
The given function is f(x)= {|x| +1, x<0 0, x=0 |x| +1, x-1, x>0
When a = 0,
\(\lim_{x\rightarrow 0^-}\)
f(x)= lim x
\(\rightarrow\)
0- (|x|+1)
\(\lim_{x\rightarrow 0^-}\)
(-x+1) [if x<0m |x| = -x ]
=-0+1
=1
\(\lim_{x\rightarrow 0^+}\)
f(x)= lim x
\(\rightarrow\)
0
+
(|x|-1)
=
\(\lim_{x\rightarrow 0^+}\)
(x-1) [If x > 0, |x| = x]
=0-1
=-1
Here, it is observed that lim x
\(\rightarrow\)
0-ƒ (x) ≠
\(\lim_{x\rightarrow 0^+}\)
ƒ (x).
∴lim f(x) does not exist.
When a <0,
\(\lim_{x\rightarrow 0^-}\)
f(x)= lim (|x|+1)
=
\(\lim_{x\rightarrow a}\)
(-x+1) [x<a<0
\(\Rightarrow\)
|x|= -x]
=-a+1
\(\lim_{x\rightarrow a^+}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
(|x|+1)
=
\(\lim_{x\rightarrow a}\)
(-x+1) [a<x<0
\(\Rightarrow\)
|x|=-x]
=-a+1
∴
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
f(x)=−a+1
Thus, the limit of f (x) exists at x = a, where a < 0.
When a > 0
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^-}\)
(|x|-1)
=
\(\lim_{x\rightarrow a}\)
(x-1) [0<x<a
\(\Rightarrow\)
|x|=x]
=a-1
\(\lim_{x\rightarrow a^+}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
(|x|-1)
=
\(\lim_{x\rightarrow a}\)
(x-1) [0<a<x
\(\Rightarrow\)
|x|=x]
=a-1
∴
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
f(x)=a-1
Thus, limit of f (x)exists at x = a, where a > 0.
Thus, lim x
\(\rightarrow\)
a f(x) exists for all a ≠ 0.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If
\[ \lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - \frac{x}{1 + x} \right) \right)^x = \alpha, \] then the value of \[ \frac{\log_e \alpha}{1 + \log_e \alpha} \] equals:
JEE Main - 2025
Mathematics
Limits
View Solution
Let
\[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) + \tan^3 \left( \frac{x}{2^{r+1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{r+1}} \right)} \right) \] Then, \( \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} \) is equal to:
JEE Main - 2025
Mathematics
Limits
View Solution
If
\[ \lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - \frac{x}{1 + x} \right) \right)^x = \alpha, \] then the value of \[ \frac{\log_e \alpha}{1 + \log_e \alpha} \] equals:
JEE Main - 2025
Mathematics
Limits
View Solution
Evaluate \( \int_{0}^{\pi/4} \frac{\cos^2 x}{\cos^2 x + 4 \sin^2 x} \, dx \):
MHT CET - 2024
Mathematics
Limits
View Solution
$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + 3^2 + \dots + \frac{1}{5n}} \right) =$
KCET - 2024
Mathematics
Limits
View Solution
View More Questions
Questions Asked in CBSE Class XI exam
If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
CBSE Class XI
Complement of a Set
View Solution
Consider the following species: N
3-
, O
2-
, F
-
, Na
+
, Mg
2+
and Al
3+
What is common in them?
Arrange them in the order of increasing ionic radii.
CBSE Class XI
Modern Periodic Law And The Present Form Of The Periodic Table
View Solution
Find and write down structures of 10 interesting small molecular weight biomolecules. Find if there is any industry which manufactures the compounds by isolation. Find out who are the buyers.
CBSE Class XI
How To Analyse Chemical Composition?
View Solution
How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?
CBSE Class XI
inequalities
View Solution
Find the mean and variance for the following frequency distribution.
Classes
0-10
10-20
20-30
30-40
40-50
Frequencies
5
8
15
16
6
CBSE Class XI
Variance and Standard Deviation
View Solution
View More Questions