>
Exams
>
Mathematics
>
Limits
>
if f x x 1 x 0 0 x 0 x 1 x 0 for what value s of a
Question:
If f(x)={|x|+1, x <0 0, x=0 |x|-1, x>0}
For what value (s) of a does lim x
\(\rightarrow\)
af(x) exist?
CBSE Class XI
Updated On:
Oct 25, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
The given function is f(x)= {|x| +1, x<0 0, x=0 |x| +1, x-1, x>0
When a = 0,
\(\lim_{x\rightarrow 0^-}\)
f(x)= lim x
\(\rightarrow\)
0- (|x|+1)
\(\lim_{x\rightarrow 0^-}\)
(-x+1) [if x<0m |x| = -x ]
=-0+1
=1
\(\lim_{x\rightarrow 0^+}\)
f(x)= lim x
\(\rightarrow\)
0
+
(|x|-1)
=
\(\lim_{x\rightarrow 0^+}\)
(x-1) [If x > 0, |x| = x]
=0-1
=-1
Here, it is observed that lim x
\(\rightarrow\)
0-ƒ (x) ≠
\(\lim_{x\rightarrow 0^+}\)
ƒ (x).
∴lim f(x) does not exist.
When a <0,
\(\lim_{x\rightarrow 0^-}\)
f(x)= lim (|x|+1)
=
\(\lim_{x\rightarrow a}\)
(-x+1) [x<a<0
\(\Rightarrow\)
|x|= -x]
=-a+1
\(\lim_{x\rightarrow a^+}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
(|x|+1)
=
\(\lim_{x\rightarrow a}\)
(-x+1) [a<x<0
\(\Rightarrow\)
|x|=-x]
=-a+1
∴
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
f(x)=−a+1
Thus, the limit of f (x) exists at x = a, where a < 0.
When a > 0
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^-}\)
(|x|-1)
=
\(\lim_{x\rightarrow a}\)
(x-1) [0<x<a
\(\Rightarrow\)
|x|=x]
=a-1
\(\lim_{x\rightarrow a^+}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
(|x|-1)
=
\(\lim_{x\rightarrow a}\)
(x-1) [0<a<x
\(\Rightarrow\)
|x|=x]
=a-1
∴
\(\lim_{x\rightarrow a^-}\)
f(x)=
\(\lim_{x\rightarrow a^+}\)
f(x)=a-1
Thus, limit of f (x)exists at x = a, where a > 0.
Thus, lim x
\(\rightarrow\)
a f(x) exists for all a ≠ 0.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If \( f(x) = \begin{cases} \frac{(e^x - 1) \log(1 + x)}{x^2} & \text{if } x>0 \\ 1 & \text{if } x = 0 \\ \frac{\cos 4x - \cos bx}{\tan^2 x} & \text{if } x<0 \end{cases} \) is continuous at \( x = 0 \), then \(\sqrt{b^2 - a^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
\(\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Let \([x]\) represent the greatest integer function. If \(\lim_{x \to 0^+} \frac{\cos[x] - \cos(kx - [x])}{x^2} = 5\), then \(k =\)
AP EAPCET - 2025
Mathematics
Limits
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{(\csc x - \cot x)(e^x - e^{-x})}{\sqrt{3} - \sqrt{2 + \cos x}} \]
AP EAPCET - 2025
Mathematics
Limits
View Solution
If a real valued function \( f(x) = \begin{cases} (1 + \sin x)^{\csc x} & , -\frac{\pi}{2} < x < 0 \\ a & , x = 0 \\ \frac{e^{2/x} + e^{3/x}}{ae^{2/x} + be^{3/x}} & , 0 < x < \frac{\pi}{2} \end{cases} \) is continuous at \(x = 0\), then \(ab = \)
AP EAPCET - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in CBSE Class XI exam
We have carefully distinguished between average speed and magnitude of average velocity. No such distinction is necessary when we consider instantaneous speed and magnitude of velocity. The instantaneous speed is always equal to the magnitude of instantaneous velocity. Why?
CBSE Class XI
Motion in a straight line
View Solution
If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
CBSE Class XI
Complement of a Set
View Solution
What are the oxidation numbers of the underlined elements in each of the following and how do you rationalise your results?
(a) KI
3
(b) H
2
S
4
O
6
(c) Fe
3
O
4
(d) CH
3
CH
2
OH (e) CH
3
COOH
CBSE Class XI
Oxidation Number
View Solution
Using s, p, d notations, describe the orbital with the following quantum numbers.
n=1, l=0
n = 3, l=1
n = 4, l =2
n=4, l=3
CBSE Class XI
Developments Leading to the Bohr’s Model of Atom
View Solution
Write the following as intervals:
(i)
{
\(x: x ∈ R, -4 < x ≤ 6\)
}
(ii)
{
\(x: x ∈ R, -12 < x < -10\)
}
(iii)
{
\(x: x ∈ R, 0 ≤ x < 7\)
}
(iv)
{
\(x: x ∈ R, 3 ≤ x ≤ 4\)
}
CBSE Class XI
Sets and their Representations
View Solution
View More Questions