If \( f(x) \) is given as: \( f(x) = \begin{cases} 3ax - 2b, & x<1 ax + b + 1, & x<1 \end{cases} \) and \( \lim_{x \to 1} f(x) \) exists, then the relation between \( a \) and \( b \) is:
Step 1: Condition for the existence of \( \lim\limits_{x \to 1} f(x) \) For the limit of \( f(x) \) to exist at \( x = 1 \), the left-hand limit (LHL) and right-hand limit (RHL) must be equal, i.e., \( \lim\limits_{x \to 1^-} f(x) = \lim\limits_{x \to 1^+} f(x). \)
Step 2: Compute \( \lim\limits_{x \to 1^-} f(x) \) For \( x<1 \), we use the function: \( f(x) = ax + b + 1. \) Substituting \( x = 1 \), \( \lim\limits_{x \to 1^-} f(x) = a(1) + b + 1 = a + b + 1. \)
Step 3: Compute \( \lim\limits_{x \to 1^+} f(x) \) For \( x<1 \), we use the function: \( f(x) = 3ax - 2b. \) Substituting \( x = 1 \), \( \lim\limits_{x \to 1^+} f(x) = 3a(1) - 2b = 3a - 2b. \)
Step 4: Equating LHL and RHL Since the limit must exist, we equate both limits: \( a + b + 1 = 3a - 2b. \)
Step 5: Solve for \( a \) and \( b \) Rearranging the equation: \( a + b + 1 - 3a + 2b = 0. \) \( -2a + 3b + 1 = 0. \) \( 2a - 3b = 1. \) Thus, the required relation between \( a \) and \( b \) is: \( \boxed{2a - 3b = 1.} \)
.The function \( f(x) \) is given by: \[ f(x) = \begin{cases} \frac{2}{5 - x}, & x<3 \\ 5 - x, & x \geq 3 \end{cases} \] Which of the following is true
Evaluate the following determinant: \( \begin{vmatrix} 1 & 1 & 1 \\ a^2 & {b^2} & {c^2} \\ {a^3} & {b^3} & {c^3} \\ \end{vmatrix} \)