We are given \( f'(x) = a \cos x + b \sin x \).
Given:
\[
f'(0) = a = 4 \Rightarrow a = 4
f'(x) = 4 \cos x + b \sin x
\]
Integrate to get \( f(x) \):
\[
f(x) = 4 \sin x - b \cos x + C
\]
Given \( f(0) = 3 \Rightarrow 0 - b(1) + C = 3 \Rightarrow C = 3 + b \)
Also \( f\left(\frac{\pi}{2}\right) = 5 \Rightarrow 4(1) - b(0) + C = 5 \Rightarrow C = 1 \Rightarrow b = -2 \)
Thus, \( f(x) = 4 \sin x + 2 \cos x + 1 \)