Step 1: Use the inverse function differentiation formula.
Recall that if \( f \) is the inverse of \( g \), then:
\[
f'(x) = \frac{1}{g'\left( f(x) \right)}
\]
Given:
\[
g'(x) = \frac{1}{1+x^n}
\]
Thus:
\[
g'\left( f(x) \right) = \frac{1}{1+\{ f(x) \}^n}
\]
Step 2: Substitute into the formula for \( f'(x) \).
Thus:
\[
f'(x) = \frac{1}{\frac{1}{1+\{ f(x) \}^n}} = 1+\{ f(x) \}^n
\]
Step 3: Conclude the answer.
Hence, \( f'(x) = 1+\{ f(x) \}^n \).