To determine the dimensions of \( \epsilon_0 E^2 \), we need to understand the dimensions of each component:
Now, let's calculate the dimensions of \( \epsilon_0 E^2 \):
Performing dimensional multiplication, we have:
Thus, the dimensions of \( \epsilon_0 E^2 \) are \([M L^{-1} T^{-2}]\).
The correct answer is therefore: \([M L^{-1} T^{-2}]\).
The electric field is given by:
\[E = \frac{KQ}{R^2}.\]
Substituting \(K = \frac{1}{4\pi \epsilon_0}\), we get:
\[E = \frac{Q}{4\pi \epsilon_0 R^2}.\]
From this, the permittivity of free space (\(\epsilon_0\)) can be expressed as:
\[\epsilon_0 = \frac{Q}{4\pi R^2 E}.\]
Now, calculate \(\epsilon_0 E^2\):
\[\epsilon_0 E^2 = \frac{Q}{4\pi R^2 E} \cdot E^2 = \frac{QE}{4\pi R^2}.\]
Analyzing the dimensional formula:
\[[\epsilon_0 E^2] = \frac{[Q][E]}{[R^2]}.\]
Substituting the dimensional formulas:
\[[Q] = [W], \quad [E] = \frac{[W]}{[R^2][Q]}.\]
\[[\epsilon_0 E^2] = \frac{[W]}{[R^3]} = \frac{ML^2T^{-2}}{L^3}.\]
Simplifying:
\[[\epsilon_0 E^2] = [ML^{-1}T^{-2}].\]
Thus, the dimensions of \(\epsilon_0 E^2\) are \([ML^{-1}T^{-2}]\).
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
Match List-I with List-II.
Choose the correct answer from the options given below :

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.