The electric field is given by:
\[E = \frac{KQ}{R^2}.\]
Substituting \(K = \frac{1}{4\pi \epsilon_0}\), we get:
\[E = \frac{Q}{4\pi \epsilon_0 R^2}.\]
From this, the permittivity of free space (\(\epsilon_0\)) can be expressed as:
\[\epsilon_0 = \frac{Q}{4\pi R^2 E}.\]
Now, calculate \(\epsilon_0 E^2\):
\[\epsilon_0 E^2 = \frac{Q}{4\pi R^2 E} \cdot E^2 = \frac{QE}{4\pi R^2}.\]
Analyzing the dimensional formula:
\[[\epsilon_0 E^2] = \frac{[Q][E]}{[R^2]}.\]
Substituting the dimensional formulas:
\[[Q] = [W], \quad [E] = \frac{[W]}{[R^2][Q]}.\]
\[[\epsilon_0 E^2] = \frac{[W]}{[R^3]} = \frac{ML^2T^{-2}}{L^3}.\]
Simplifying:
\[[\epsilon_0 E^2] = [ML^{-1}T^{-2}].\]
Thus, the dimensions of \(\epsilon_0 E^2\) are \([ML^{-1}T^{-2}]\).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: