First, evaluate $k = \displaystyle \lim_{x \to 0} \dfrac{|x|}{\sqrt{x^4 + 4x^2 + 5}}$
As $x \to 0$, the denominator tends to $\sqrt{5}$ and numerator tends to $0$
So, $k = \dfrac{0}{\sqrt{5}} = 0$
Now, $l = \displaystyle \lim_{x \to 0} x^4 \sin\left(\dfrac{1}{3\sqrt{x}}\right)$
As $x \to 0$, $\dfrac{1}{\sqrt{x}} \to \infty$ so $\sin(\cdot)$ oscillates in $[-1,1]$
But $x^4 \to 0$, hence $x^4 \cdot \sin(...) \to 0$
So, $l = 0$
Thus, $k + l = 0 + 0 = 0$