Concept: This problem uses the fundamental trigonometric identity relating cosecant (\(\csc\)) and cotangent (\(\cot\)):
\[ \csc^2\theta - \cot^2\theta = 1 \]
Step 1: Substitute the given expressions for \(\csc\theta\) and \(\cot\theta\) into the identity
Given:
\(\csc\theta = 2x\)
\(\cot\theta = \frac{2}{x}\)
Substitute these into \( \csc^2\theta - \cot^2\theta = 1 \):
\[ (2x)^2 - \left(\frac{2}{x}\right)^2 = 1 \]
Step 2: Simplify the equation
\[ (2x)^2 = 4x^2 \]
\[ \left(\frac{2}{x}\right)^2 = \frac{2^2}{x^2} = \frac{4}{x^2} \]
So the equation becomes:
\[ 4x^2 - \frac{4}{x^2} = 1 \]
Step 3: Factor out the common term to match the desired expression
We need to find the value of \( 2\left(x^2 - \frac{1}{x^2}\right) \).
Look at the equation from Step 2: \( 4x^2 - \frac{4}{x^2} = 1 \).
Factor out 4 from the left side:
\[ 4\left(x^2 - \frac{1}{x^2}\right) = 1 \]
Step 4: Solve for the desired expression
We want \( 2\left(x^2 - \frac{1}{x^2}\right) \).
From \( 4\left(x^2 - \frac{1}{x^2}\right) = 1 \), we can find \( \left(x^2 - \frac{1}{x^2}\right) \) by dividing by 4:
\[ x^2 - \frac{1}{x^2} = \frac{1}{4} \]
Now, multiply by 2:
\[ 2\left(x^2 - \frac{1}{x^2}\right) = 2 \times \frac{1}{4} \]
\[ 2\left(x^2 - \frac{1}{x^2}\right) = \frac{2}{4} = \frac{1}{2} \]
Thus, the value of the expression is \(\frac{1}{2}\).