Question:

If

\[ \cosh^{-1}\left(\frac{5}{3}\right) + \sinh^{-1}\left(\frac{3}{4}\right) = k, \]

then \( e^k \) is:

Show Hint

When combining exponential terms, especially with hyperbolic functions, ensure proper manipulation of exponential equations to accurately compute values.
Updated On: Mar 12, 2025
  • \(\frac{2}{3}\)
  • \(\frac{3}{2}\)
  • \(6\)
  • \(5\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Simplify the expression for \(k\).
Using the definition of hyperbolic inverse functions: \[ \cosh^{-1}\left(\frac{5}{3}\right) \text{ and } \sinh^{-1}\left(\frac{3}{4}\right) \] \[ \cosh y = \frac{5}{3}, \sinh x = \frac{3}{4}. \] Recall that \(\cosh y = \frac{e^y + e^{-y}}{2}\) and \(\sinh x = \frac{e^x - e^{-x}}{2}\). Step 2: Determine the values of \(e^y\) and \(e^x\).
Solving these equations, we find: \[ e^y = \frac{5 + \sqrt{25 - 9}}{3} = \frac{5 + 4}{3} = 3, \quad e^{-y} = \frac{1}{3} \] \[ e^x = \frac{3 + \sqrt{9 + 16}}{4} = \frac{3 + 5}{4} = 2, \quad e^{-x} = \frac{1}{2} \] Step 3: Evaluate \(e^k\) using \(k = x + y\).
\[ e^k = e^{x+y} = e^x \times e^y = 2 \times 3 = 6. \]
Was this answer helpful?
0
0