We are given that \( \cos \alpha = k \cos \beta \), and we are asked to find an expression for \( \cot \left( \frac{\alpha + \beta}{2} \right) \).
Step 1: Use sum and difference trigonometric identities
First, recall the trigonometric identity for the cotangent of a sum:
\[
\cot \left( \frac{\alpha + \beta}{2} \right) = \frac{\cos \left( \frac{\alpha + \beta}{2} \right)}{\sin \left( \frac{\alpha + \beta}{2} \right)}
\]
We can relate this to the given equation \( \cos \alpha = k \cos \beta \) using angle sum identities.
Step 2: Manipulate the equation and simplify
Using the relationship between \( \cos \alpha \) and \( \cos \beta \), and simplifying using the angle sum identities, we find that:
\[
\cot \left( \frac{\alpha + \beta}{2} \right) = \frac{k + 1}{k - 1} \tan \left( \frac{\beta - \alpha}{2} \right)
\]
Thus, the correct answer is \( \frac{k + 1}{k - 1} \tan \left( \frac{\beta - \alpha}{2} \right) \).