1. Understand the problem:
Given cos⁻¹x + cos⁻¹y + cos⁻¹z = 3π, we need to find the value of x(y+z) + y(z+x) + z(x+y).
2. Analyze the given equation:
The maximum value of cos⁻¹θ for any θ ∈ [-1,1] is π. The sum equals 3π only if each term equals π.
Thus, cos⁻¹x = cos⁻¹y = cos⁻¹z = π ⇒ x = y = z = -1.
3. Substitute x = y = z = -1:
The expression becomes:
(-1)(-1-1) + (-1)(-1-1) + (-1)(-1-1) = (-1)(-2) + (-1)(-2) + (-1)(-2) = 2 + 2 + 2 = 6
Correct Answer: (C) 6