
Consider a ∆ABC.
Two circles are drawn while taking AB and AC as the diameter.
Let they intersect each other at D and let D not lie on BC.
Join AD.
∠ADB = 90° (Angle subtended by semi-circle)
∠ADC = 90° (Angle subtended by semi-circle)
∠BDC = ∠ADB + ∠ADC = 90° + 90° = 180°
Therefore, BDC is a straight line and hence, our assumption was wrong.
Thus, Point D lies on third side BC of ∆ABC.

In figure \( \angle BAP = 80^\circ \) and \( \angle ABC = 30^\circ \), then \( \angle AQC \) will be:


(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that ∠ BCD is a right angle.
