To find \(|-2 \cdot A^{-1}|\) for a square matrix \(A\) of order 3 with \(|A| = -2\), we use the properties of determinants:
- The determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix: \(|A^{-1}| = \frac{1}{|A|}\).
- Therefore, \(|A^{-1}| = \frac{1}{-2} = -\frac{1}{2}\).
- For any scalar \( k \) and matrix \( M \), the determinant is \(|kM| = k^n |M|\) where \(n\) is the order of the matrix.
- So, \(|-2 \cdot A^{-1}| = (-2)^3 \cdot |A^{-1}| = -8 \cdot \left(-\frac{1}{2}\right) = 4\).
Thus, the value of \(|-2 \cdot A^{-1}|\) is 4.