Given the matrix \( A = \begin{bmatrix} 2a & 0 & 0 \\ 0 & 2a & 0 \\ 0 & 0 & 2a \end{bmatrix} \), we need to find the value of \(|adj A|\).
The adjugate of a matrix, \( adj A \), is equal to the cofactor matrix of \( A \) transposed. For a \( 3 \times 3 \) matrix, if \( A \) is a diagonal matrix like the one given, every diagonal element \( 2a \) contributes to the determinant and adjugate in a specific pattern.
The determinant of a diagonal matrix is the product of its diagonal elements, so:
\[\det(A) = (2a) \times (2a) \times (2a) = 8a^3\]
For a \( 3 \times 3 \) matrix, the property \( adj(A) = \det(A) \cdot A^{-1} \) holds. Since \( A \) is a diagonal matrix, its inverse can be easily defined as:
\[A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} 2a & 0 & 0 \\ 0 & 2a & 0 \\ 0 & 0 & 2a \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2a} & 0 & 0 \\ 0 & \frac{1}{2a} & 0 \\ 0 & 0 & \frac{1}{2a} \end{bmatrix}\]
Hence, the adjugate is:
\[adj(A) = 8a^3 \begin{bmatrix} \frac{1}{2a} & 0 & 0 \\ 0 & \frac{1}{2a} & 0 \\ 0 & 0 & \frac{1}{2a} \end{bmatrix}\]
\[= \begin{bmatrix} 4a^2 & 0 & 0 \\ 0 & 4a^2 & 0 \\ 0 & 0 & 4a^2 \end{bmatrix}\]
The determinant of \( adj(A) \) is the product of its diagonal elements:
\[|adj(A)| = (4a^2) \times (4a^2) \times (4a^2) = 64a^6\]
Thus, \(|adj A| = 64a^6\).