The answer is 5.
Given:
\(\beta = \lim_{x \to 0} \frac{e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x}{x \sin^2 x}\)
1. Examine \(e^{x^3}\):
For \(x \to 0\),
\(e^{x^3} \approx 1 + x^3 \quad \text{(ignoring higher-order terms)}\)
2. Examine \((1 - x^3)^{\frac{1}{3}}\):
Using the binomial approximation for small x,
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
3. Examine \((1 - x^2)^{\frac{1}{2}}\):
Using the binomial approximation,
\((1 - x^2)^{\frac{1}{2}} \approx 1 - \frac{x^2}{2}\) So,
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
4. Examine sin x:
For small x,
\(\sin x \approx x\)
Now, substitute these approximations back into the original limit expression:
\(e^{x^3} \approx 1 + x^3\)
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
\(\sin x \approx x\)
Now compute the numerator:
\(e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x\)
\(\approx (1 + x^3) - \left(1 - \frac{x^3}{3}\right) + \left(- \frac{x^2}{2}\right) x\)
\(\approx 1 + x^3 - 1 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(\approx x^3 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(= x^3 \left(1 + \frac{1}{3} - \frac{1}{2}\right)\)
\(= x^3 \left(\frac{6}{6} + \frac{2}{6} - \frac{3}{6}\right)\)
\(= x^3 \left(\frac{5}{6}\right)\)
For the denominator:
\(x \sin^2 x \approx x \cdot x^2 = x^3\)
Thus, the limit becomes:
\(\beta = \lim_{x \to 0} \frac{\frac{5}{6} x^3}{x^3} = \frac{5}{6}\)
Therefore, the value of \(6\beta\) is:
\(6\beta = 6 \times \frac{5}{6} = 5\)
So, the answer is 5.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.