The answer is 5.
Given:
\(\beta = \lim_{x \to 0} \frac{e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x}{x \sin^2 x}\)
1. Examine \(e^{x^3}\):
For \(x \to 0\),
\(e^{x^3} \approx 1 + x^3 \quad \text{(ignoring higher-order terms)}\)
2. Examine \((1 - x^3)^{\frac{1}{3}}\):
Using the binomial approximation for small x,
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
3. Examine \((1 - x^2)^{\frac{1}{2}}\):
Using the binomial approximation,
\((1 - x^2)^{\frac{1}{2}} \approx 1 - \frac{x^2}{2}\) So,
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
4. Examine sin x:
For small x,
\(\sin x \approx x\)
Now, substitute these approximations back into the original limit expression:
\(e^{x^3} \approx 1 + x^3\)
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
\(\sin x \approx x\)
Now compute the numerator:
\(e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x\)
\(\approx (1 + x^3) - \left(1 - \frac{x^3}{3}\right) + \left(- \frac{x^2}{2}\right) x\)
\(\approx 1 + x^3 - 1 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(\approx x^3 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(= x^3 \left(1 + \frac{1}{3} - \frac{1}{2}\right)\)
\(= x^3 \left(\frac{6}{6} + \frac{2}{6} - \frac{3}{6}\right)\)
\(= x^3 \left(\frac{5}{6}\right)\)
For the denominator:
\(x \sin^2 x \approx x \cdot x^2 = x^3\)
Thus, the limit becomes:
\(\beta = \lim_{x \to 0} \frac{\frac{5}{6} x^3}{x^3} = \frac{5}{6}\)
Therefore, the value of \(6\beta\) is:
\(6\beta = 6 \times \frac{5}{6} = 5\)
So, the answer is 5.
Monocyclic compounds $ P, Q, R $ and $ S $ are the major products formed in the reaction sequences given below.
The product having the highest number of unsaturated carbon atom(s) is:
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
For the reaction sequence given below, the correct statement(s) is(are):
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.