The determinant is:
\[ \det = 1 \cdot \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} k & 1 \\ 1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} k & 0 \\ 1 & 0 \end{vmatrix}. \]Simplify:
\[ \det = 0 - 3(k - 1) + k = -3k + 3 + k = -2k + 3. \]Given \( |\det| = 6 \), solve:
\[ -2k + 3 = \pm 6 \quad \Rightarrow \quad k = \pm 2. \]Final Answer: \( \boxed{\pm 2} \)
Given that $ A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} $, matrix $ A $ is:
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Fixed Assets | 27,00,000 | |
| Chandan | 7,00,000 | Stock | 3,00,000 |
| Deepak | 5,00,000 | Debtors | 2,00,000 |
| Elvish | 3,00,000 | Cash | 1,00,000 |
| General Reserve | 4,50,000 | ||
| Creditors | 13,50,000 | ||
| Total | 33,00,000 | Total | 33,00,000 |
