Step 1: Property of determinants
For a square matrix \( A \), \( |A \cdot \text{adj}(A)| = |A|^n \), where \( n \) is the size of \( A \).
Step 2: Compute \( |A| \)
Using cofactor expansion:
\[
|A| = -2 \cdot \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -2((-2) - 3) = 10.
\]
Step 3: Calculate \( |A \cdot \text{adj}(A)| \)
Since \( n = 3 \):
\[
|A \cdot \text{adj}(A)| = |A|^3 = 10^3 = 1000.
\]
Step 4: Verify the options
The correct value is \( 1000 \), which corresponds to option (D).