If α, β, γ, δ are the roots of the equation x4 + x3 + x2 + x + 1 = 0, then α2021 + β2021 + γ2021 + δ2021 is equal to
x4 + x3 + x2 + x + 1 = 0 or \(\frac{x^5-1}{x-1}\) = 0.
So roots are e\(^{\frac{i2\pi}{5}}\), e\(^{\frac{i4\pi}{5}}\), e\(^{\frac{i6\pi}{5}}\), e\(^{\frac{i8\pi}{5}}\), i.e. α,β,γ and δ
From properties of nth root of unity
\(1^{2021}+α^{2021}+β^{2021}+γ^{2021}+δ^{2021}\)=0
⇒ \(α^{2021}+β^{2021}+γ^{2021}+δ^{2021}=-1\)
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation