The given complex is
\[[\text{Fe}(\text{NH}_3)_2(\text{CN})_4]^{3+}\]
Here, the oxidation state of iron is \(+3\), which corresponds to a \(d^5\) electronic configuration in the high-spin state. The ligands cyanide (\(\text{CN}^-\)) and ammonia (\(\text{NH}_3\)) are arranged such that the \(e_g\) orbitals remain unoccupied.
Given values:
\(x = 2 \, (number\ of \text{NH}_3 \, \text{ligands})\),
\(y = 4 \, (\text{number of } \text{CN}^- \, \text{ligands})\)
Thus, \(x + y = 2 + 4 = 6\).
The structure of the major product formed in the following reaction is:
The steam volatile compounds among the following are:
The structure of the major product formed in the following reaction is:
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: