The given quadratic equation is \( x^2 - 5kx + (6k^2-2k) = 0 \).
Let the roots be \(r_1 = \alpha\) and \(r_2 = 0\).
We are given \(\alpha \neq 0\).
From Vieta's formulas for a quadratic \(ax^2+bx+c=0\):
Product of roots \(r_1 r_2 = c/a\).
Sum of roots \(r_1+r_2 = -b/a\).
For the given equation, \(a=1, b=-5k, c=6k^2-2k\).
1.
Product of roots:
\( \alpha \cdot 0 = \frac{6k^2-2k}{1} \)
\( 0 = 6k^2-2k \)
\( 0 = 2k(3k-1) \)
This implies \(2k=0\) or \(3k-1=0\).
So, \(k=0\) or \(k=\frac{1}{3}\).
2.
Sum of roots:
\( \alpha + 0 = - \frac{-5k}{1} \)
\( \alpha = 5k \).
3.
Evaluate \(\alpha\) for the possible values of \(k\):
If \(k=0\), then \(\alpha = 5(0) = 0\).
This contradicts the given condition \(\alpha \neq 0\).
So, \(k \neq 0\).
If \(k=\frac{1}{3}\), then \(\alpha = 5\left(\frac{1}{3}\right) = \frac{5}{3}\).
This value \(\alpha = 5/3\) is not zero, so it is valid.
Therefore, \(\alpha = \frac{5}{3}\).
\[ \boxed{\frac{5}{3}} \]