We are given the equation:
\[
12x^{\frac{1}{3}} - 25x^{\frac{1}{6}} + 12 = 0
\]
Step 1: Substituting a New Variable
Let:
\[
y = x^{\frac{1}{6}}
\]
Then:
\[
x^{\frac{1}{3}} = y^2
\]
Rewriting the equation in terms of \( y \):
\[
12y^2 - 25y + 12 = 0
\]
Step 2: Solve for \( y \)
Using the quadratic formula:
\[
y = \frac{-(-25) \pm \sqrt{(-25)^2 - 4(12)(12)}}{2(12)}
\]
\[
= \frac{25 \pm \sqrt{625 - 576}}{24}
\]
\[
= \frac{25 \pm \sqrt{49}}{24}
\]
\[
= \frac{25 \pm 7}{24}
\]
\[
y = \frac{32}{24} = \frac{4}{3}, \quad y = \frac{18}{24} = \frac{3}{4}
\]
Step 3: Compute \( \frac{\alpha}{\beta} \)
Since \( x = y^6 \), we find:
\[
\alpha = \left(\frac{4}{3}\right)^6, \quad \beta = \left(\frac{3}{4}\right)^6
\]
\[
\frac{\alpha}{\beta} = \left(\frac{4}{3}\right)^{12}
\]
Step 4: Compute \( 6\sqrt{\frac{\alpha}{\beta}} \)
\[
6\sqrt{\frac{\alpha}{\beta}} = 6 \times \left(\frac{4}{3}\right)^6
\]
\[
= 6 \times \frac{4096}{729}
\]
\[
= \frac{24576}{729} = \frac{16}{9}
\]
Final Answer: \(\boxed{\frac{16}{9}}\)
\bigskip