Step 1: Express \( \sin \beta \) and \( \cos \beta \) in terms of \( \sin \alpha \) and \( \cos \alpha \).
From \( \frac{\sin \alpha}{\sin \beta} = \frac{6}{5} \), we have \( \sin \beta = \frac{5}{6} \sin \alpha \).
(Equation 1)
From \( \frac{\cos \alpha}{\cos \beta} = \frac{9}{5\sqrt{5}} \), we have \( \cos \beta = \frac{5\sqrt{5}}{9} \cos \alpha \).
(Equation 2)
Since \( \alpha \) and \( \beta \) are acute angles, \( \sin \alpha, \cos \alpha, \sin \beta, \cos \beta \) are all positive.
Step 2: Use the trigonometric identity \( \sin^2 \beta + \cos^2 \beta = 1 \).
Substitute the expressions for \( \sin \beta \) and \( \cos \beta \) from Equations 1 and 2:
\[ \left(\frac{5}{6} \sin \alpha\right)^2 + \left(\frac{5\sqrt{5}}{9} \cos \alpha\right)^2 = 1 \]
\[ \frac{25}{36} \sin^2 \alpha + \frac{25 \cdot 5}{81} \cos^2 \alpha = 1 \]
\[ \frac{25}{36} \sin^2 \alpha + \frac{125}{81} \cos^2 \alpha = 1 \]
Step 3: Divide the entire equation by 25.
\[ \frac{1}{36} \sin^2 \alpha + \frac{5}{81} \cos^2 \alpha = \frac{1}{25} \]
Step 4: Substitute \( \cos^2 \alpha = 1 - \sin^2 \alpha \) into the equation.
Let \( s = \sin \alpha \).
Then \( \cos^2 \alpha = 1 - s^2 \).
\[ \frac{1}{36} s^2 + \frac{5}{81} (1 - s^2) = \frac{1}{25} \]
\[ \frac{s^2}{36} + \frac{5}{81} - \frac{5s^2}{81} = \frac{1}{25} \]
Rearrange terms to solve for \( s^2 \):
\[ s^2 \left(\frac{1}{36} - \frac{5}{81}\right) = \frac{1}{25} - \frac{5}{81} \]
Step 5: Calculate the coefficients.
For the left side coefficient: \( \frac{1}{36} - \frac{5}{81} \).
The LCM of 36 and 81 is 324.
\( \frac{1 \cdot 9}{36 \cdot 9} - \frac{5 \cdot 4}{81 \cdot 4} = \frac{9}{324} - \frac{20}{324} = \frac{9-20}{324} = \frac{-11}{324} \).
For the right side: \( \frac{1}{25} - \frac{5}{81} \).
The LCM of 25 and 81 is \( 25 \times 81 = 2025 \).
\( \frac{1 \cdot 81}{25 \cdot 81} - \frac{5 \cdot 25}{81 \cdot 25} = \frac{81}{2025} - \frac{125}{2025} = \frac{81-125}{2025} = \frac{-44}{2025} \).
Step 6: Solve for \( s^2 \).
The equation becomes:
\[ s^2 \left(\frac{-11}{324}\right) = \frac{-44}{2025} \]
Multiply by -1:
\[ s^2 \left(\frac{11}{324}\right) = \frac{44}{2025} \]
\[ s^2 = \frac{44}{2025} \cdot \frac{324}{11} \]
\[ s^2 = \frac{4 \cdot 11}{2025} \cdot \frac{324}{11} = \frac{4 \cdot 324}{2025} \]
Simplify the fraction \( \frac{324}{2025} \): \( 324 = 18^2 = (2 \cdot 3^2)^2 = 4 \cdot 81 \).
\( 2025 = 25 \cdot 81 \).
\[ \frac{324}{2025} = \frac{4 \cdot 81}{25 \cdot 81} = \frac{4}{25} \]
So, \( s^2 = 4 \cdot \frac{4}{25} = \frac{16}{25} \).
Step 7: Find \( s = \sin \alpha \).
\[ s = \sqrt{\frac{16}{25}} = \frac{4}{5} \]
Since \( \alpha \) is an acute angle, \( \sin \alpha \) must be positive.
So, \( \sin \alpha = \frac{4}{5} \).
This matches option (1).