If a line makes an angle of \(\frac{\pi}{3}\) with each of the x and y-axis, then we need to find the acute angle made by the line with the z-axis.
Let \(\alpha, \beta, \gamma\) be the angles the line makes with the x, y, and z-axis respectively. Then \(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1\).
We are given that \(\alpha = \frac{\pi}{3}\) and \(\beta = \frac{\pi}{3}\). Therefore:
\(\cos^2(\frac{\pi}{3}) + \cos^2(\frac{\pi}{3}) + \cos^2 \gamma = 1\)
\((\frac{1}{2})^2 + (\frac{1}{2})^2 + \cos^2 \gamma = 1\)
\(\frac{1}{4} + \frac{1}{4} + \cos^2 \gamma = 1\)
\(\frac{1}{2} + \cos^2 \gamma = 1\)
\(\cos^2 \gamma = 1 - \frac{1}{2} = \frac{1}{2}\)
\(\cos \gamma = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}\)
Since we want the acute angle, we take the positive value:
\(\cos \gamma = \frac{1}{\sqrt{2}}\)
\(\gamma = \cos^{-1}(\frac{1}{\sqrt{2}}) = \frac{\pi}{4}\)
Therefore, the acute angle made by the line with the z-axis is \(\frac{\pi}{4}\).
Thus, the correct option is (A) \(\frac{\pi}{4}\).
Let the direction cosines be $ l, m, n $. Then $ l = \cos \alpha $, $ m = \cos \beta $, $ n = \cos \gamma $.
Given $ \alpha = \frac{\pi}{3} $, $ \beta = \frac{\pi}{3} $, so:
$$ l = \cos \frac{\pi}{3} = \frac{1}{2}, \quad m = \cos \frac{\pi}{3} = \frac{1}{2}. $$
We know that $ l^2 + m^2 + n^2 = 1 $. Substituting $ l $ and $ m $:
$$ \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + n^2 = 1 \implies \frac{1}{4} + \frac{1}{4} + n^2 = 1 \implies \frac{1}{2} + n^2 = 1 \implies n^2 = \frac{1}{2}. $$ $$ n = \pm \frac{1}{\sqrt{2}}. $$
If $ \cos \gamma = \frac{1}{\sqrt{2}} $, then $ \gamma = \frac{\pi}{4} $. If $ \cos \gamma = -\frac{1}{\sqrt{2}} $,
then $ \gamma = \frac{3\pi}{4} $.
Since we need the acute angle, $ \gamma = \frac{\pi}{4} $.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2