\(12 \sqrt{29}\)
\(24 \sqrt{29}\)
Given points:
\( A(1, -1, 2), \, B(5, 7, -6), \, C(3, 4, -10), \, D(-1, -4, -2) \)
The area is given by:
\[ \text{Area} = \frac{1}{2} | \vec{AC} \times \vec{BD} | = \frac{1}{2} | (2i + 5j - 12k) \times (6i + 11j - 4k) | \]
Calculating the cross product:
\[ = \frac{1}{2} | 12i - 64j - 8k | \]
Taking the magnitude:
\[ = \frac{1}{2} \sqrt{(12)^2 + (-64)^2 + (-8)^2} \]
\[ = \frac{1}{2} \sqrt{144 + 4096 + 64} \]
\[ = \frac{1}{2} \sqrt{4304} \]
\[ = \frac{1}{2} \times 2 \sqrt{1076} \]
\[ = \sqrt{1076} \]
Therefore:
\[ \text{Area} = 12 \sqrt{29} \]
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is