\(12 \sqrt{29}\)
\(24 \sqrt{29}\)
Given points:
\( A(1, -1, 2), \, B(5, 7, -6), \, C(3, 4, -10), \, D(-1, -4, -2) \)
The area is given by:
\[ \text{Area} = \frac{1}{2} | \vec{AC} \times \vec{BD} | = \frac{1}{2} | (2i + 5j - 12k) \times (6i + 11j - 4k) | \]
Calculating the cross product:
\[ = \frac{1}{2} | 12i - 64j - 8k | \]
Taking the magnitude:
\[ = \frac{1}{2} \sqrt{(12)^2 + (-64)^2 + (-8)^2} \]
\[ = \frac{1}{2} \sqrt{144 + 4096 + 64} \]
\[ = \frac{1}{2} \sqrt{4304} \]
\[ = \frac{1}{2} \times 2 \sqrt{1076} \]
\[ = \sqrt{1076} \]
Therefore:
\[ \text{Area} = 12 \sqrt{29} \]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).