\(12 \sqrt{29}\)
\(24 \sqrt{29}\)
Given points:
\( A(1, -1, 2), \, B(5, 7, -6), \, C(3, 4, -10), \, D(-1, -4, -2) \)
The area is given by:
\[ \text{Area} = \frac{1}{2} | \vec{AC} \times \vec{BD} | = \frac{1}{2} | (2i + 5j - 12k) \times (6i + 11j - 4k) | \]
Calculating the cross product:
\[ = \frac{1}{2} | 12i - 64j - 8k | \]
Taking the magnitude:
\[ = \frac{1}{2} \sqrt{(12)^2 + (-64)^2 + (-8)^2} \]
\[ = \frac{1}{2} \sqrt{144 + 4096 + 64} \]
\[ = \frac{1}{2} \sqrt{4304} \]
\[ = \frac{1}{2} \times 2 \sqrt{1076} \]
\[ = \sqrt{1076} \]
Therefore:
\[ \text{Area} = 12 \sqrt{29} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.