\( \left\{ x \in \mathbb{R} \mid x = 2n\pi + \frac{\pi}{8}, 2n\pi \pm \frac{\pi}{16}, n = 0,1,2,3, \dots \right\} \)
We begin by solving the given trigonometric equations:
Step 1: Find the solution set \( A \) for \( \cos^2 x = \cos^2 \frac{\pi}{6} \)
Since: \[ \cos^2 \frac{\pi}{6} = \frac{3}{4} \] The general solution for \( \cos^2 x = k \) is: \[ x = 2n\pi \pm \alpha, \quad \text{where } \alpha = \cos^{-1} \left(\sqrt{\frac{3}{4}}\right) = \frac{\pi}{6} \] Thus, the solution set \( A \) is: \[ A = \left\{ x \mid x = 2n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z} \right\} \]
Step 2: Find the solution set \( B \) for \( \cos^2 x = \log_{10} P \)
We are given: \[ P + \frac{16}{P} = 10 \] Multiplying both sides by \( P \): \[ P^2 - 10P + 16 = 0 \] Solving for \( P \): \[ P = \frac{10 \pm \sqrt{100 - 64}}{2} = \frac{10 \pm 6}{2} \] \[ P = \frac{16}{2} = 8, \quad P = \frac{4}{2} = 2 \] Since: \[ \cos^2 x = \log_{10} P \] we substitute: \[ \cos^2 x = \log_{10} 2 \] which corresponds to: \[ x = 2n\pi \pm \frac{\pi}{3}, \quad x = 2n\pi \pm \frac{2\pi}{3} \] Thus, the solution set \( B \) is: \[ B = \left\{ x \mid x = 2n\pi \pm \frac{\pi}{3}, 2n\pi \pm \frac{2\pi}{3}, n \in \mathbb{Z} \right\} \]
Step 3: Compute \( B - A \)
Comparing the solution sets, we find: \[ B - A = \left\{ x \mid x = 2n\pi + \frac{\pi}{3}, 2n\pi \pm \frac{2\pi}{3}, n \in \mathbb{Z} \right\} \] Thus, the correct answer is: \[ \mathbf{\left\{ x \in \mathbb{R} \mid x = 2n\pi + \frac{\pi}{3}, 2n\pi \pm \frac{2\pi}{3}, n = 0,1,2,3, \dots \right\}} \]