For a square matrix A, if A has an inverse, denoted as \(A^{-1}\), then \(A \cdot A^{-1} = I\), where I is the identity matrix.
Now, let's evaluate \((A^2)^{-1}\)
\((A^2)^{-1} = (A \cdot A)^{-1}\)
According to the property of matrix inverses, \((A \cdot B)^{-1} = B^{-1} \cdot A^{-1}\) for matrices A and B.
Applying this property to \((A \cdot A)^{-1}\), we get:
\((A \cdot A)^{-1} = A^{-1} \cdot A^{-1}\)
Therefore,\((A^2)^{-1} = A^{-1} \cdot A^{-1}\) (option C).
We are given that \( A \) is a matrix of order \( 3 \times 3 \). We are to find: \[ (A^2)^{-1} \] Recall the property of matrix inverses: \[ (AB)^{-1} = B^{-1}A^{-1} \] and in particular, \[ (A^2)^{-1} = (A \cdot A)^{-1} = A^{-1} \cdot A^{-1} = (A^{-1})^2 \] Therefore, \[ (A^2)^{-1} = (A^{-1})^2 \] Correct answer: \((A^{-1})^2\)
We are given a matrix A of order 3x3 and asked to find the expression for \((A^2)^{-1}\).
We know that for any invertible matrix B, \((B^{-1})^{-1} = B\).
Also, \((AB)^{-1} = B^{-1}A^{-1}\), where A and B are invertible matrices.
Using these properties, we have:
\((A^2)^{-1} = (AA)^{-1}\)
\((A^2)^{-1} = A^{-1}A^{-1}\)
\((A^2)^{-1} = (A^{-1})^2\)
Now let's check if any of the other options are equivalent to \((A^{-1})^2\):
Thus, \((A^2)^{-1} = (A^{-1})^2 = (-A)^{-2}\)
The correct answer is \( (A^{-1})^2\)
Answer:
\((A^{-1})^2\)
The graph shown below depicts: