For a square matrix A, if A has an inverse, denoted as \(A^{-1}\), then \(A \cdot A^{-1} = I\), where I is the identity matrix.
Now, let's evaluate \((A^2)^{-1}\)
\((A^2)^{-1} = (A \cdot A)^{-1}\)
According to the property of matrix inverses, \((A \cdot B)^{-1} = B^{-1} \cdot A^{-1}\) for matrices A and B.
Applying this property to \((A \cdot A)^{-1}\), we get:
\((A \cdot A)^{-1} = A^{-1} \cdot A^{-1}\)
Therefore,\((A^2)^{-1} = A^{-1} \cdot A^{-1}\) (option C).
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: